The Partial Reconstruction Symplectic Geometry Mode Decomposition and Its Application in Rolling Bearing Fault Diagnosis

نویسندگان

چکیده

Extracting the fault characteristic information of rolling bearings from intense noise disturbance has been a heated research issue. Symplectic geometry mode decomposition (SGMD) already adopted for bearing diagnosis due to its advantages no subjective customization parameters and ability reconstruct existing modes. However, SGMD suffers rapidly decreasing calculation efficiency as amount data increases, in addition invalid symplectic components affecting accuracy. The regularized composite multiscale fuzzy entropy (RCMFE) operator is constructed evaluate complexity each initial single component minimize residual energy. Combined with partial reconstruction threshold indicator filter out specific significant components, raw signal can be decomposed into multiple physically meaningful geometric components. Therefore, accuracy enhanced. Thus, method proposed based on (PRSGMD). Both simulated experimental analysis results show that PRSGMD improve speed while increasing accuracy, thereby augmenting robustness effectiveness algorithm.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Ensemble Empirical Mode Decomposition for Rolling Bearing Fault Diagnosis

Rolling bearing is an important part in mechanical system and faults occur frequently with vibration noise. Empirical mode decomposition (EMD) is a tool for nonlinear and non-stationary signals analysis. However, the major drawbacks of EMD are mode mixing problem, ensemble empirical mode decomposition (EEMD) provides a new tool for signal analysis, and it is an improved technique of EMD. In ord...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

A Rolling Bearing Fault Diagnosis Method Based on Variational Mode Decomposition and an Improved Kernel Extreme Learning Machine

Rolling bearings are key components of rotary machines. To ensure early effective fault diagnosis for bearings, a new rolling bearing fault diagnosis method based on variational mode decomposition (VMD) and an improved kernel extreme learning machine (KELM) is proposed in this paper. A fault signal is decomposed via VMD to obtain the intrinsic mode function (IMF) components, and the approximate...

متن کامل

Rolling Bearing Fault Diagnosis Based on Wavelet Packet Decomposition and Multi-Scale Permutation Entropy

This paper presents a rolling bearing fault diagnosis approach by integrating wavelet packet decomposition (WPD) with multi-scale permutation entropy (MPE). The approach uses MPE values of the sub-frequency band signals to identify faults appearing in rolling bearings. Specifically, vibration signals measured from a rolling bearing test system with different defect conditions are decomposed int...

متن کامل

Tensor Singular Spectrum Decomposition Algorithm Based on Permutation Entropy for Rolling Bearing Fault Diagnosis

Mechanical vibration signal mapped into a high-dimensional space tends to exhibit a special distribution and movement characteristics, which can further reveal the dynamic behavior of the original time series. As the most natural representation of high-dimensional data, tensor can preserve the intrinsic structure of the data to the maximum extent. Thus, the tensor decomposition algorithm has br...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sensors

سال: 2023

ISSN: ['1424-8220']

DOI: https://doi.org/10.3390/s23177335